Euclid and His Synonymous Identity with Geometry

            

             The ancient Greeks have contributed much to the development of the Western World as we know it today. The Greeks questioned all and yearned for the answers to many of life"s questions. Their society revolved around learning, which allowed them to devote the majority of their time to enlightenment. In answering their questions, they developed systematic activities such as philosophy, psychology, astronomy, mathematics, and a great deal more. Socrates (469-399 BC) was an ancient Greek philosopher whose ideas mark the turning point in the history of knowledge and formal thought. Plato (428-347:348 BC) one of Socrates students founded the Academy. The Academy was key in spreading thought and knowledge because of it"s devotion to teaching the sciences. Aristotle (384-322 BC), Plato"s brightest student, founded Biology and is given credit for his accomplishments in varying fields. Out of all of the great Greek accomplishments which influence the world today, I chose the one which I believe is the most important, Euclidean Geometry and its effects.

             Euclid (365-300 BC) is often considered synonymous with geometry. Euclid"s works have been so influential that they serve as the basis for most geometrical teachings for the past 2000 years. His works supercede all other works of its kind. Euclid"s interests in spatial knowledge lead him to detailed definitions, postulates, and axioms that are used today. Data is a collection of given measurements and postulates that Euclid collected. Data expresses that lines, angles, and ratios can be given in magnitude; rectilinear figures may be given in species or form; and points and lines may be given in position. Euclid"s 94 propositions state that when certain aspects of a figure are given, other aspects can be found by using concrete formulas. For example, proposition 66 states, "If a triangle have one angle given, the area of the rectangle contained by the sides including the angle has to the area of that triangle a given ratio.

Related Essays: